-169天

若$\lim\limits_{x \to 0}\frac{{a{x^2}}+{bx}+1-e^{{x^2}-2x}}{x^2}=2$,则()

(A)a=5,b=-2.                                                  (B)a=-2,b=5.

(C)a=2,b=0.                                                   (D)a=3,b=-3

解:

1)原极限等于2,因此可以改写极限为:

$$\lim\limits_{x \to 0}{\frac{{a{x^2}}+{bx}+1-e^{{x^2}-2x}}{x^2}} \cdot x=0$$

$$\lim\limits_{x \to 0}{\frac{{a{x^2}}+{bx}+1-e^{{x^2}-2x}}{x}}=0$$

$$b+\lim\limits_{x \to 0}{\frac{1-e^{{x^2}-2x}}{x}}=0$$

$$b+\lim\limits_{x \to 0}{\frac{2x-x^2}{x}}=0(等价代换)$$

$$b=-2,排除法得A$$

2)泰勒公式$e^x=1+x+\frac{x^2}{2!}+…+\frac{x^n}{n!}+…$

因此根据复合函数泰勒:

$$
\begin{aligned}
e^{{x^2}-2x}&=1+({{x^2}-2x})+\frac{({x^2}-2x)^2}{2!}+o(x^2)\\
&=1-2x+3x^2+o(x^2)\qquad则a=5,b=-2.
\end{aligned}
$$
3)洛必达:
$$2=\lim\limits_{x \to 0}\frac{2ax+b-{2x-2}e^{{x^2}-2x}}{2x}$$
分母取向0,分子趋向b+2,因此b=-2
化简:
$$
\begin{aligned}
2&=a-1+\lim\limits_{x \to 0}\frac{-2+2e^{x^2-2x}}{2x}\\
&=a-1+\lim\limits_{x \to 0}\frac{x^2-2x}{x}\\
&=a-3\qquad a=5.
\end{aligned}
$$

-168天

若$\lim\limits_{x \to 0}(\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x})^{\frac{1}{x^2}}=e^2$,则()
(A)a=1,b=-1                                                  (B)a=1,b=1
(C)a=0,b=$\frac{13}{6}$                                                  (D)a=0,b=$-\frac{13}{6}$

解:

$$\lim\limits_{x \to 0}e^(\frac{ln(\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x})}{x^2})=e^2$$
$$\lim\limits_{x \to 0}\frac{ln(\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x})}{x^2}=2$$
$$\lim\limits_{x \to 0}\frac{ln(\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}+1-1)}{x^2}=2$$
$$\lim\limits_{x \to 0}\frac{\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}-1}{x^2}=2$$
$$\lim\limits_{x \to 0}\frac{ln(x+\sqrt{x^2+1})+ax^2+bx^3-x}{x^3}=2$$
$$\lim\limits_{x \to 0}\frac{ln(x+\sqrt{x^2+1})-x}{x^3}\overset{洛}{=}
\lim\limits_{x \to 0}\frac{\frac{1}{\sqrt{1+x^2}}-1}{3x^2}\overset{无穷小等价}{=}
\lim\limits_{x \to 0}\frac{-\frac{1}{2}x^2}{3x^2}=-\frac{1}{6}$$
$$则a=0,b=\frac{13}{6}$$

-167天

已知常数$a>0,bc\neq0$,使得$\lim\limits_{x \to +\infty}[x^aln(1+\frac{b}{x})-x]=c$,求a,b,c.
1)泰勒:
$$ln(1+\frac{b}{x})=\frac{b}{x}-\frac{1}{2}(\frac{b}{x})^2+o(\frac{1}{x})^2$$
$$c=\lim\limits_{x \to +\infty}[\frac{{x^a}b}{x}-\frac{b{x^a}}{2x^2}+x^ao(\frac{1}{x^2})-x]$$
最后一项x趋向正无穷,而极限等于常熟,观察可得a=2,b=1,c=-1/2.
2)极限两边同除以x
$$\lim\limits_{x \to +\infty}[x^{a-1}ln(1+\frac{b}{x})-1]=0$$
$$1=\lim\limits_{x \to +\infty}x^{a-1}ln(1+\frac{b}{x})=\lim\limits_{x \to +\infty}\frac{bx^a}{x^2}$$
则a=2,b=1.
$$
\begin{aligned}
c&=\lim\limits_{x \to +\infty}[x^2ln(1+\frac{1}{x})-x]\\
&=\lim\limits_{x \to +\infty}x^2[ln(1+\frac{1}{x})-\frac{1}{x}]\\
&\overset{x-ln(1+x)\sim\frac{1}{2}x^2}{=}\lim\limits_{x \to +\infty}x^2[-\frac{1}{2}\frac{1}{x}^2]=-\frac{1}{2}
\end{aligned}
$$

-166天

当${x \to 0}$时,$\int_{0}^{x^2}(e^{t^3}-1)dt$是$x^7$的()

(A)低阶无穷小                                              (B)等价无穷小

(C)高阶无穷小                                              (D)同阶但非等价无穷小

解:结论$\int_{0}^{\phi(x)}f(t)dt$,其中$\phi(x)$为n阶,$f(t)$为m阶,则总体为$n(m+1)$阶

因此选C

-165天

当${x \to 0^+}$时,下列无穷小量中最高阶的是()

A.$\int_{0}^{x}(e^{t^2}-1)dt$                                      B.$\int_{0}^{x}ln(1+\sqrt{t^3})dt$
C.$\int_{0}^{sinx}sint^2dt$                                             D.$\int_{0}^{1-cosx}\sqrt{sin^3t}dt$

解:使用结论“$\int_{0}^{\phi(x)}f(t)dt$,其中$\phi(x)$为n阶,$f(t)$为m阶,则总体为$n(m+1)$阶”

A:1(2+1)        B:1(3/2+1)   C:1(2+1)      D:2(3/2+1)

选D

-164天

已知 a,b为常数,若$(1+\frac{1}{n})^n-e$与$\frac{b}{n^a}$在${n \to \infty}$时是等价无穷小,求a,b.

解:$$
\begin{aligned}
(1+\frac{1}{n})^n-e&=e^{nln(1+\frac{1}{n})}-e\\
&\overset{拉格朗日中值}{=}e^\xi[nln(1+\frac{1}{n})-1]\\
&\sim en[ln(1+\frac{1}{n})-frac{1}{n}]\\
&\sim en(-1/2)\frac{1}{n^2}=-\frac{e}{2}\frac{1}{n}\sim \frac{b}{n^a}
\end{aligned}
$$
所以a=1,b=-e/2

-163天

当${x \to 0}$时,下列无穷小量中最高阶的是()

A.$(1+x)^{x^2}-1$

B.$e^{x^4-2x}-10$

C.$\int_{0}^{x^2}sint^2dt$

D.$\sqrt{1+2x}-\sqrt[3]{1+3x}$

解:

A.3阶

B.$x^4-2x\sim -2x$1阶

C.2(2+1)=6阶

D.泰勒展开=$[1+\frac{1}{2}(2x)+\frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(2x)^2+o(x^2)]-[1+\frac{1}{3}(3x)+\frac{\frac{1}{3}(\frac{1}{3}-1)}{2!}(3x)^2+o(x^2)]=\frac{1}{2}x^2+o(x^2)$2阶

-162天

当${x \to 0^+}$时,下列无穷小量中最高阶的是()

A.$\int_{0}^{1-\cos x}\frac{\sin t}{t}dt$                    B.$\int_{0}^{x}t\tan {\sqrt{x^2-t^2}}dt$

C.$\int_{\sin x}^{1-\sqrt{\cos x}}e^{xt} \ln{(1+t^3)}dt$     D.$\int_{\sin x}^{x}\sqrt{\sin^3 x}dt$

解:

A.$1-\cos x\sim 1/2x^2,\frac{\sin t}{t}\sim 1$$\qquad2(0+1)=2阶$

B.令$\sqrt{(x^2-t^2)}=u,原式=\int_{0}^{x}u\tan udu\qquad 1(2+1)=3阶$

C.有积分中值定理$\int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx$

$
\begin{aligned}
原式&=e^{\xi} \int_{\sin x}^{1-\sqrt{\cos x}}\ln{(1+t^3)}dt\sim \int_{\sin x}^{1-\sqrt{\cos x}}\ln{(1+t^3)}dt \\
&\sim \int_{0}^{1-\sqrt{\cos x}}\ln{(1+t^3)}dt-\int_{0}^{\sin x}\ln{(1+t^3)}dt
\end{aligned}
$
$2(3+1)=8阶\qquad1(1+3)=4阶,低阶决定整体阶数$

D.$1(3/2+1),经错标零$

积分中值:$原式=(x-\sin x)\sin^{3/2} \sim 1/6x^3\cdot x^3/2=9/2$

-161天

设$x \to a$时,f(x)与g(x)分别是x-a的n阶与m阶无穷小,则下列命题

  1. f(x)g(x)是x-a的n+m阶无穷小.
  2. 若n>m,则$\frac{f(x)}{g(x)}$是x-a的n-m阶无穷小.
  3. 若$n\leq m$,则f(x)+g(x)是x-a的n阶无穷小.
  4. 若f(x)连续,则$\int_{a}^{x}f(t)dt$是x-a的n+1阶无穷小.

中,正确的个数是

解:

1、$\frac{f(x)g(x)}{(x-a)^(n+m)}\rightarrow A$

2、同1

3、反例$x-\sin x$,n<m成立

4、$\lim\limits_{x \to a}\frac{\int_{a}^{x}f(t)dt}{(x-a)^(n+1)}洛必达一次$

1,2,4对

-160天

设f(x)连续,且$\lim\limits_{x \to 0^+}\frac{f(x)}{x}=1$,$\alpha(x)=\int_{0}^{\sqrt x}\frac{\ln(1+t^4)}{f(t)}dt$,$\beta(x)=\int_{0}^{\sin x}\frac{\sqrt{1+t^3}-1}{f(t)}dt$,则当$x \to 0^+$时,$\alpha(x)$是$\beta(x)$的().

(A)等价无穷小         (B)同阶但非等价的无穷小

(C)高阶无穷小         (D)低阶无穷小

秒了D

-159天

当$x \to 0$时,$2\arctan x-\ln{\frac{1+x}{1-x}}$是x的n阶无穷小,则n=()

解:$\lim\limits_{x \to 0}\frac{2\arctan x-\ln{\frac{1+x}{1-x}}}{x^n}\overset{洛}{=}\lim\limits_{x \to 0}\frac{\frac{2}{1+x^2}-\frac{2}{1-x^2}}{nx^{n-1}}=2\lim\limits_{x \to 0}\frac{-2x}{nx^{n-1}(1+x^2)(1-x^2)},n=3$

泰勒公式,略

-158天

当$x \to 0^+$时,$(1+x)^{\frac{1}{x}}-(e+ax+bx^2)$是比$x^2$高阶的无穷小,则a,b?

解: 泰勒

$$(1+x)^{\frac{1}{x}}=e^{\frac{1}{x}\ln(1+x)}=e^{\frac{1}{x}[x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)]}=e^{1-\frac{x}{2}+\frac{x^2}{3}+o(x^2)}=e\cdot e^{-\frac{x}{2}+\frac{x^2}{3}+o(x^2)}$$

$$=e[1+(-\frac{x}{2}+\frac{x^2}{3})+\frac{1}{2!}(-\frac{x}{2}+\frac{x^2}{3})+o(x^2)]=e-\frac{e}{2}x+\frac{11e}{24}x^2+o(x^2)$$

$$a=-\frac{e}{2},b=\frac{11}{24}e$$

-157天

设函数$f(x)=\frac{\sin x}{1+x^2}$在$x=0$处的3次泰勒多项式为$ax+bx^2+cx^3$,则,a?b?c?

解1:$f(x)=\frac{\sin x}{1+x^2}=(x-\frac{x^3}{3!}+o(x^3))(1-x^2+0(x^2))=x-\frac{7x^3}{6}+0(x^2)$

解2:$f(x)-x=\frac{\sin x}{1+x^2}-x\sim \sin x-x(1+x^2)=(\sin x-x)-x^3\sim -\frac{7}{6}x^3$

-156天

设函数$f(x)=\sec x$在$x=0$处的2次泰勒多项式为$1+ax+bx^2$,则a?b?

解1:$f(0)=\sec 0=1$,$f'(0)=\sec x\tan x|_{x=0}$,$f”(0)=(\sec x\tan^2 x+\sec^3 x)|_{x=0}=1$

$f(x)=1+1/2x^2+0(x^2)$

解2:$f(x)=\sec x=\frac{1}{\cos x}=\frac{1}{1-\frac{1}{2!}x^2+0(x^2)}=1+ax+bx^2(把分母乘到右端)$

解3:$f(x)-1=\frac{1}{\cos x}-1\sim \frac{1}{2}x^2\qquad f(x)-1=\frac{1}{2}x^2+o(x^2)$

-155天

函数$f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}}\ln|x|}$的可去间断点的个数为?

解:

所有间断点:1,-1,0,2

$\lim\limits_{x \to 0}f(x)=0,可去$

$
\lim\limits_{x \to 1}f(x)=2e\lim\limits_{x \to 1}\frac{|x-1|}{\ln x}=2e\lim\limits_{x \to 1}\frac{|x-1|}{x-1}=\left\{
\begin{aligned}
& 2e,\qquad&{x \to 1^+}\\
& -2e,\qquad&{x \to 1^-}
\end{aligned}
\right.
跳跃
$
$\lim\limits_{x \to -1}f(x)=2\sqrt[3]{e}\lim\limits_{x \to -1}\frac{x+1}{\ln|x|}=-2\sqrt[3]{e},可去$
$\lim\limits_{x \to 2^+}f(x)=0\qquad\lim\limits_{x \to 2^-}f(x)=\infty,无穷$

-154天

设$f(x)$和$\varphi (x)$在$(-\infty,\infty)$内有定义,f(x)为连续函数,$\varphi (x)$有间断点,则下列命题

  1. $f(x)[|\varphi (x)|+\varphi^2 (x)]$必有间断点.
  2. 若f(x)单调,则$\frac{\varphi (x)}{|f(x)|}$必有间断点.
  3. $\frac{\varphi (x)}{1+f^2(x)}$必有间断点.
  4. $f(x)\varphi (x)$必有间断点.

1.$\varphi (x)$有间断点推不出$|\varphi (x)|$有间断点,如$\varphi(x)=\left\{\begin{aligned}-1,&x\leq0\\ 1,&x>0\end{aligned}\right.$

反命题则正确

$\varphi (x)$有间断点推不出$|varphi^2 (x)$有间断点

反命题也成立

2.考虑$f(x)$是否可以等于0,若无零点,则$\frac{\varphi (x)}{|f(x)|}$处处有定义,反证若没有间断点,$\frac{\varphi (x)}{|f(x)|}|f(x)|$则连续,则退出$\varphi(x)$连续,矛盾,因此必有间断点。

若有零点,且唯一,则是间断点。

3.$1+f^2(x)$不等于零,函数处处有定义。

4.反例$f(x)\equiv 0$

-153天

设$f(x)=\lim\limits_{n \to \infty}\frac{x^{n+2}}{\sqrt{2^{2n}+x^{2n}}}$,则$f(x)$在其定义域内()

解:
$
f(x)=\left\{
\begin{aligned}
&\lim\limits_{n \to \infty}\frac{x^{n+2}}{2^n\sqrt{1+(\frac{x}{n})^{2n}}}=0&\qquad|x|<2\\ &\lim\limits_{n \to \infty}\frac{x^nx^2}{|x|^n\sqrt{(\frac{2}{x})^{2n}+1}}=x^2&\qquad x>2\\
&\lim\limits_{n \to \infty}\frac{x^nx^2}{|x|^n\sqrt{(\frac{2}{x})^{2n}+1}}不存在&\qquad x<2\\
&2\sqrt{2}&\qquad x=2\\
\end{aligned}
\right.
$

所以有唯一间断点,且为跳跃间断点

-152天

设$f(x)=\lim\limits_{n \to \infty}\frac{x^{n+2}-x^{-n}}{x^n+x^{-n}},则函数间断点

解:

$
\lim\limits_{n \to \infty}x^n=\left\{
\begin{aligned}
&0\qquad|x|<1\\ &\infty\qquad|x|>1\\
&1\qquad x=1\\
&不存在\qquad x=-1\\
\end{aligned}
\right.
$
$
f(x)=\lim\limits_{n \to \infty}\frac{x^{2n+2}-1}{x^{2n}+1}=\left\{
\begin{aligned}
&-1\qquad 0<|x|<1\\ &x^2\qquad|x|>1\\
&0\qquad|x|=1\\
\end{aligned}
\right.
$
显然$f(0)$无意义,而$\lim\limits_{x \to 0}f(x)=-1$,则x=0是可区间断点
$f(1^-)=\lim\limits_{x \to 1^-}f(x)=\lim\limits_{x \to 1^-}(-1)=-1\qquad f(1^+)=\lim\limits_{x \to 1^+}f(x)=\lim\limits_{x \to 1^-}x^2=1$,则x=1是跳跃间断点,而$f(x)$是偶函数,故x=-1也是跳跃间断点

-151天

设$f(x)$在x=1处连续,且$\frac{f(x)-2x}{e^{x-1}-1}-\frac{1}{\ln x}$在$x=1$的某去心领域内有界,则f(1)等于?

解:

$\lim\limits_{x \to 1}(e^{x-1}-1)[\frac{f(x)-2x}{e^{x-1}-1}-\frac{1}{\ln x}]=\lim\limits_{x \to 1}[f(x)-2x-\frac{e^{x-1}-1}{\ln x}]=0$

$\lim\limits_{x \to 1}[f(x)-2x-\frac{e^{x-1}-1}{\ln x}]=f(1)-2-\lim\limits_{x \to 1}\frac{e^{x-1}-1}{\ln x}=f(1)-3$

$f(1)=3$