Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer  (), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

Sample Output:

4 1 6 3 5 7 2

#include<iostream>
#include<queue>

using namespace std;

typedef struct Node {
	int key;
	struct Node* left = NULL;
	struct Node* right = NULL;
}node,*L;//node为节点,*L为指向根的指针

int N;//节点数量
int post[35];//后续
int in[35];//中序
void build_tree(L &root,int post_L,int post_R ,int in_L,int in_R) {//后序序列区间[post_L,post_R],中序序列区间[in_L,in_R]
	if (post_R < post_L)return; node* temp = new node; temp->key = post[post_R];
	root = temp;
	int index;//根节点在中序中的位置
	for (index = in_L; index <= in_R; index++) { if (in[index] == post[post_R])break; } build_tree(root->left, post_L, index - in_L + post_L - 1, in_L, index - 1);
	build_tree(root->right, index - in_L + post_L, post_R - 1, index + 1, in_R);
}

void BFS(L root) {
	queue<node*> n;
	n.push(root);
	int num = 0;
	while (!n.empty()) {
		node* temp = new node;
		temp = n.front();
		n.pop();
		num++;
		if (num < N) {
			cout << temp->key << ' ';
		}
		else cout << temp->key;
		if (temp->left != NULL)n.push(temp->left);
		if (temp->right != NULL)n.push(temp->right);
	}
}
int main() {
	cin >> N;
	for (int i = 1; i <= N; i++) { cin >> post[i];
	}
	for (int i = 1; i <= N; i++) { cin >> in[i];
	}
	L root = new node;//创建根节点
	//root->key = post[N];
	build_tree(root, 1, N, 1, N);
	//preorder(root);
	BFS(root);
}