A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer  (). Then  integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7
8 6 5 7 10 8 11

Sample Output 1:

YES
5 7 6 8 11 10 8

Sample Input 2:

7
8 10 11 8 6 7 5

Sample Output 2:

YES
11 8 10 7 5 6 8

Sample Input 3:

7
8 6 8 5 10 9 11

Sample Output 3:

NO

#include<iostream>
#include<vector>
using namespace std;

int N;//节点数
int seq[1010];

typedef struct Node {
	int key;
	struct Node* left = NULL;
	struct Node* right = NULL;
}node;

vector pre;//存前序
vector pre_mirror;//存镜像前序
vector post;//存后续
vector post_mirror;//存镜像后续


void create_tree(node*& root,int n) {
	if (root == NULL) {
		node* temp = new node;
		temp->key = n;
		root = temp;
		return; 
	}
	else if (n < root->key) { create_tree(root->left,n); }
	else{ create_tree(root->right,n); }
}
void preorder(node* root,vector&a) {
	if (root == NULL)return;
	//cout << root->key;
	a.push_back(root->key);
	preorder(root->left,a);
	preorder(root->right,a);
}

void preorder_mirror(node* root, vector& a) {//镜像先序相当于中右左遍历
	if (root == NULL)return;
	a.push_back(root->key);
	preorder_mirror(root->right, a);
	preorder_mirror(root->left, a);
}

void postorder(node* root, vector& a) {
	if (root == NULL)return;
	postorder(root->left,a);
	postorder(root->right,a);
	a.push_back(root->key);
}

void postorder_mirror(node*root, vector& a) {//镜像后序相当于右左后遍历
	if (root == NULL)return;
	postorder_mirror(root->right,a);
	postorder_mirror(root->left,a);
	a.push_back(root->key);
}
int main() {
	cin >> N;
	for (int i = 0; i < N; i++) {
		cin >> seq[i];
	}
	node* root = new node;
	root->key = seq[0];
	for (int i = 1; i < N; i++) {
		create_tree(root, seq[i]);
	}
	preorder(root, pre);
	preorder_mirror(root, pre_mirror);
	postorder(root, post);
	postorder_mirror(root, post_mirror);
	bool flag = 1;
	bool flag_mirror = 1;
	for (int i = 0; i < N; i++) {
		if (seq[i] != pre[i]) {
			flag = 0;
			break;
		}
	}
	for (int i = 0; i < N; i++) {
		if (seq[i] != pre_mirror[i]) {
			flag_mirror = 0;
			break;
		}
	}
	if (flag == 0 && flag_mirror == 0)cout << "NO";
	else{
		cout << "YES" << endl;
		if (flag == 1) {
			for (int i = 0; i < N; i++) {
				cout << post[i];
				if (i < N - 1)cout << ' ';
				else cout << endl;
			}
		}
		else if (flag_mirror == 1) {
			for (int i = 0; i < N; i++) {
				cout << post_mirror[i];
				if (i < N - 1)cout << ' ';
				else cout << endl;
			}
		}
	}
}