1069 The Black Hole of Numbers
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
— the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we’ll get:
7766 – 6677 = 1089
9810 – 0189 = 9621
9621 – 1269 = 8352
8532 – 2358 = 6174
7641 – 1467 = 6174
… …
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer in the range .
Output Specification:
If all the 4 digits of are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 – 6677 = 1089
9810 – 0189 = 9621
9621 – 1269 = 8352
8532 – 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 – 2222 = 0000
#include <iostream> #include <string> #include <algorithm> #include<math.h> #include<queue> #include<vector> using namespace std; int to_num(int a, int b, int c, int d) { return a * 1000 + b * 100 + c * 10 + d; } int get_increase(int a[]) { return to_num(a[0], a[1], a[2], a[3]); } int get_decrease(int a[]) { return to_num(a[3], a[2], a[1], a[0]); } int main() { int num; cin >> num; int num_seq[4]; num_seq[0] = num / 1000; num_seq[1] = num / 100 % 10; num_seq[2] = num / 10 % 10; num_seq[3] = num % 10; if (num_seq[0] == num_seq[1] && num_seq[1] == num_seq[2] && num_seq[2] == num_seq[3]) { cout << num << " - " << num << " = " << "0000"; } else { int ans=0; do { sort(num_seq, num_seq + 4); int a = get_decrease(num_seq); int b = get_increase(num_seq); ans = a - b; printf("%04d - %04d = %04d", a, b, ans); cout << endl; num_seq[0] = ans / 1000; num_seq[1] = ans / 100 % 10; num_seq[2] = ans / 10 % 10; num_seq[3] = ans % 10; } while (ans != 6174); } }
最新评论